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Abstract The style in which an RNA molecule folds in space obeys laws ofnu-
cleotide binding and attraction which are encoded in its primary structure, that is,
in the sequence of nucleotides conforming it. Natural language sentences can also
be viewed as encodings for a structure in space- in this case,a parse tree- which ex-
hibits relationships or bindings between different parts of the sentence. We explore
the possibilities in adapting a recent, simple and elegant methodology for bioinfor-
matics which has been successfully used for RNA design, to the problem of parsing
poems that follow specific stylistic trends. The methodology introduced in this paper
can be easily express in terms of multi-agent systems.

1 Introduction

The application to molecular biology of AI methods such as logic programming and
constraint reasoning constitutes a fascinating interdisciplinary field which, despite
being relatively new, has already proved quite fertile. Forinstance, logic program-
ming techniques have been used to describe and analyze protein structure [17], for
protein secondary structure prediction [16], for drug design [13] and for predicting
gene functions [12].
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As well, methodologies that pertain to the natural languageprocessing field of
AI are now being exploited to analyze biological sequences,which is uncovering
similarities between the languages of molecular biology and human languages (e.g.
[5]).

On the other hand, the potential influence of computational molecular biology
over natural language processing, has been much less studied, although some sim-
ilarities and cross-fertilization potential are startingto be identified and exploited
(e.g. [8]).

In [4], a novel methodology was presented -chrRNA- for addressing an important
bioinformatics problem which has been proved to be computationally hard: that of
finding an RNA sequence which folds into a given structure.

Obvious potential applications are to in vitro genetics, byenabling the scientists
to produce RNAs artificially from sequences; and to drug design, which typically
progresses backwards from proteins to RNAs and finally to DNAs.

A much less evident potential application is proposed in this paper: the adapta-
tion of the same methodology to computational linguistics problems. We explore
in particular its uses for solving the apparently disparateproblem of using stylis-
tic information as an aid for processing poetry, e.g. for parsing or for authorship
determination.

Our work springs from the observation that, in the same way asmolecules each
have their own style, while all obeying the same nucleic acidgrammar (that of RNA
or DNA), human artistic creations are marked by the specific style of their author
even when the grammar available to all authors (the elementsthey may use, the
ways in which they may combine those elements) may be the same. Thus the En-
glish language, for instance, obeys the same grammar rules no matter who uses it,
but nevertheless, each poet uses that same grammar with verydifferent, while char-
acteristic for each author, styles.

The method developed in [4] for determining what RNA sequence a given
molecule’s structure folds into involves a very simple grammar augmented by prob-
abilities. These probabilities encode the molecule’s “style”, as it were, so adapting
our method to computational linguistics involves resorting to stylistic probabilities
observed in a given author’s poetic production in order to aid in the parse of a given
poem of the same author, or to aid in determining authorship itself.

2 Background

2.1 Constraint Handling Rules (CHR) and Constraint Handling
Rule Grammars (CHRG)

Constraint Handling Rules (CHR)provide a simple bottom-up framework which
has been proved to be useful for algorithms dealing with constraints [10, 7]. Be-
cause logic terms are used, grammars can be described in human-like terms and are
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powerfully extended through (hidden) logical inference. The format of CHR rules
is:

Head ==>Guard|Body

Head andBody are conjunctions of atoms andGuard is a test constructed from
(Prolog) built-in or system-defined predicates. The variables inGuard andBody
occur also inHead. If theGuard is the constant “true”, then it is omitted together
with the vertical bar. Its logical meaning is the formula(Guard→ (Head→Body))
and the meaning of a program is given by conjunction. There are three types of CHR
rules:

• Propagation rules, which add new constraints (body) to the constraint set.
• Simplification rules, which also add as new constraints those in the body, but

remove as well the ones in the head of the rule.
• Simpagation rules, which combine propagation and simplification traits, and al-

low us to select which of the constraints mentioned in the head of the rule should
remain and which should be removed from the constraint set.

The rewrite symbols for the first two rules are respectively:==>,<=> and for simga-
tion rules, the notation isHead1\Head2<=>body. Anything inHead1 remains
in the constraint set and anything inHead2 is removed from the constraint set.

CHR have a grammatical counterpart -CHRG [7]- which is to CHRwhat Definite
Clause Grammars are to Prolog: grammar symbols compile intoconstraints in which
the word boundaries are made explicit automatically, so there’s no need to handle
them in the grammar. The notation that distinguishes a grammar rule from a plain
CHR rule. is::>

Thus for instance, the following CHRG rule:

verb, noun_phrase==> verb_phrase.

compiles into a CHR counterpart in which the start and end points are visible:

verb(Start,P1),
noun_phrase(P1,End)==> verb_phrase(Start,End).

2.2 The chrRNA Method for RNA Design

Research on the language of nucleic acid, parsimoniously but powerfully formed
basically with only four letters, or nucleotides (A, C, T andG), has in the past
few years started to uncover fruitful similarities betweenthis language and human
languages [19]. Just as a sentence in English is only the visible part, or tip of the
iceberg, for that sentence’s rich structure, which is essential to its meaning, a nucleic
acid “sentence” (i.e., a sequence of A’s, C’s, T’s and G’s) hides, or codes for, an
incredibly rich structure which takes 3D shape when some of the nucleotides in the
sentence bind with others, and which is just as essential to that sentence’s meaning.
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Scientists in computational molecular biology are interested both in the genera-
tion aspect of this process, namely predicting which 3D structure a known sequence
of nucleotides might fold into, and in its analyzing aspect,namely finding out what
sequence of nucleotides codes for a molecule whose 3D structure is known.

Both these aspects have approximate computational solutions, as long as com-
promises are made with a particularly hard subproblem: thatof molecules contain-
ing a specific 3D structure called apseudoknot. Simple pseudoknots occur when a
structure of the form of a hairpin loop contains nucleotidesthat bind outside the
loop.

Methods dealing with pseudoknots are delicate to conceive.Initially, the meth-
ods for RNA structure prediction used to simply disregard the possibility of having
pseudoknots, due to the huge algorithmic complexity these would bring to the prob-
lem, compared to the moderate gain in prediction accuracy. For the analysis aspect,
also known as theinverse RNA problem, or the problem ofRNA design, the same
algorithmic issue with pseudoknots persists. The solutionproposed recently in [4]
allows pseudoknots.

Previous solutions to this problem divide the whole structure into smaller sub-
structures and apply some techniques to resolve it for smaller parts, which causes
them to be slow while working with longer RNAs (more than 500 bases). Bavarian
and Dahl show in [4] that by using a set of simple Constraint Handling Rules, this
problem could actually have an approximate but somehow useful solution in linear
time, despite the simplistic grammar model.

This solution- named chrRNA- encodes an RNA molecule’s style in terms of
probabilities which are incorporated into the (otherwise highly ambiguous) gram-
mar rules that describe RNA primary structure. With the aid of their embedded prob-
abilities, they guide the assignment of content (one of A, C,U1 or G) to nucleotides
we know are paired but whose identity is not known, and also for the nucleotides
we know are unpaired but whose identity is likewise unknown.

These rules are based on the simple but highly ambiguous context free grammar
proposed in [1] for RNA secondary structure prediction:

S→ cSg|gSc|aSu|uSa|gSu|uSg

S→ aS|gS|uS|cS

S→ a|g|u|c

S→ SS

Using CHR to implement this grammar allows us both to exploitthe bottom-up
characteristic of CHR rules, as well as keep track of ambiguous readings with no
special overhead.

1 In RNA, thymine (T) is replaced by uracile (U), but U and T are perfectly equivalent at the
informational level.
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2.2.1 Representation issues

As mentioned, the problem consists of finding a sequence of A,C, U and G which
folds into the (given as input) structure of the desired RNA.In the chrRNA method,
this structure is entered in the format of CHR constraints, e.g. for expressing that the
base number 1 and the base number 43 in the sequence are pairedtogether, we add
the constraintpair(1,43) or if base number 3 is unpaired, the corresponding
constraint would beupair(3). One advantage of this input format to the input
format used by previous methods (RNAinverse and RNA-SSD) isthat it is capable
of accepting pseudoknots in the input structure.

2.2.2 Processing issues

We now need to assign nucleotides to each position given the input constraints.
The trivial solution of randomly assigning one of the Watson-Crick pairs (an AU or
CG pair) to each base pair and one of the four nucleotides (A, C, G and U) to the
unpaired bases is not a reliable one, since we might end up with a sequence that may
not actually fold into the input structure. This is because the number of GC pairs has
an important role in stabilizing a certain structure. For instance, if we assign baseG
to 1 and baseU to position 43 and if we have a baseC in position 42, in the end, the
structure might bepair(1,42) instead ofpair(1,43).

The solution we have proposed uses CHR rules combined with the probabilities
that are believed to govern the proportion of base pairs within RNA sequences, cal-
culated by comparing several RNAs together from Gutell lab’s comparative RNA
website, a database of known RNA secondary structures. After comparing 100 test
cases with various length from 100 to 1500 bases, they found the following proba-
bilities for each base pair:

PCG = 0.53,PAU = 0.35,PGU = 0.12

The other probabilities which are of interest are the probabilities for an unpaired
base to be one ofA, C, G, orU . The results are as follows:

PG = 0.18,PA = 0.34,PC = 0.27,PU = 0.20

Inserting the probabilities into the rules is done by generating a random variable
in the guard section of the rules, and then testing this random variable according
to the probabilities: for instance if the random variableI generated when trying to
instantiate a pair of nucleotides X1 and Y21 is less than 0.53, the grammar rule will
assign a GC pair topair(X1,Y1).

The result is a quite simple while powerful system which performs better than
the two previous methods for longer sequences, and which is capable of handling
pseudoknots. The application of our ideas could be useful for in vitro genetics and
for drug design. We shall next argue that they can also be fruitfully adapted for
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literary style processing, and exemplify this thesis around the poetry of the Cuban
author Nicolas Guillen.

3 Poetic Style

Just as the CF grammar of RNA by itself is highly ambiguous, human languages
in general and poems in particular are also prone to ambiguity; however we have
chosen poems as a starting point because poetic style often departs in idiosyncratic
ways from standard word orderings often found in prose, and identifying such style
trends might therefore contribute clues that serve to disambiguate, much in the way
as the probabilities used in chrRNA help identify an RNA string unambiguously. We
can moreover express these trends precisely in the same way:through probabilities
resulting from an analysis of the particular author’s style.

As an example, Guillen’s poems make frequent use of topicalization, which of-
ten makes it hard to identify a sentence’s subject from syntax alone. For instance,
whereas in Spanish subjects precede the verb, a verse could start with the main verb,
followed by the subject, as in: “Dejó el borracho en su coche, dejó elcabaret...”
which reordered and translated, would be: “The drunkard left the cabaret ...in his
car”. In other cases, of course, what follows the main verb isthe more expected
direct object, as in “dejó el cabaret”.

However, an analysis of Guillen’s style might allow us to encode into the context
free rules, just as we did for nucleic acid rules, probabilities that can help us disam-
biguate, e.g. by helping us determine in which cases an NP following a verb is its
subject (as “el borracho”) and in which cases it is an object (as “el cabaret”). We
might want to encode Spanish and stylistic observations such as:

• a verb’s subject has high probability of being adjacent to (either preceding or
following it) the main verb;

• a direct object has high probability of following, rather than preceding, the verb;
• a main verb which is repeated has high probability of having in its repeated oc-

currence the same, albeit implicit, subject as the first occurrence’s;
• a second verb with no overt subject, particularly if in the same tense and person

as the first verb, has high probability of implicitly having the same subject as the
first verb.

According to these rules, we can bet that in our example, “dejó el cabaret”, which
has no overt subject, actually means “the drunkard left the cabaret”, rather than “the
cabaret left”.

Of course, the more accurate an analysis of a given poet’s style and of the exact
values of the different probabilities - which above are onlystated as being “high” -,
the more accurate the proposed method will be for correctly using style to interpret
a poem’s meaning. It is not our purpose in this paper to propose precise values for
any such probabilities; rather, we aim at showing how the chrRNA method that has
proved so successful for RNA design can be adapted also to literary analysis.
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4 PoeticRNA

We now abstract the problem of analyzing poems to make it amenable to the same
form as that of RNA design.

4.1 Representation issues

Our “nucleotides” are now blocks of words marked by syntactic functions, such as
verb, noun phrase, preposition phrase, which can in a first stage be gleaned through
a regular CHRG , e.g. “el borracho” can be analyzed into a nounphrase stretching
from position 2 in the input sentence to position 3 but whose role inside the sentence-
i.e., the style which binds concepts with one another- remains to be found. This
shows up in a CHR rule as the constraintnoun_phrase(2,3,[el,borracho]),
and in its CHRG counterpart, as the grammar symbol
noun_phrase([el,borracho]), with word boundaries left implicit (but ac-
cessible if needed).

The roles we are after (subject, direct object, etc.) will berepresented also
through grammar symbols that compile into constraints. Theroles will be super-
imposed, so to speak, over the stretch of input string concerned. Thus if we view
“noun phrase” as a label covering the substring “el borracho”, once we find that this
noun phrase’s role is that of subject, we will add a new constraint which, in this
same graphic view, would label the same substring with “subject”.

Other arguments relevant to the analysis can of course be included, for our pur-
poses here we’ll only add in some cases an index I which will bean identifier to
the “nucleotide” that the block containing it attaches to, or refers to (e.g. to the
antecedent in the case of a a prepositional phrase or a relative clause).

4.2 Processing issues

Let us consider the following sentence, adapted from Nicolas Guillen’s “La Gui-
tarra” for explanatory purposes: “Dejó el borracho en su coche, dejó el cabaret som-
brio”. This can be parsed into one sentence, which explicitly and in English would
correspond to “The drunkard left the sombre cabaret (by traveling) in his car”. Any
Spanish reader would understand that the verb’s repetitionis for poetic effect, rather
than a “new” main verb. A machine analyzer, however, would recognize two sen-
tences, corresponding either to: “(Someone) left the drunkard in his car, and (the
same person) left the sombre cabaret, or “Someone left the drunkard in his car, and
the sombre cabaret left”. The first interpretation is likelywhen one considers that
implicit subjects are very common in Spanish (so any reasonable Spanish analyzer
would conceive it); the second one is nonsensical for humansbut plausible from syn-
tax alone, and therefore, a fair candidate for a poetically uninformed parser. Note
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that while the state-of-the-art in parsing would allow us tochoose between these two
interpretations, perhaps by paying the price of including semantic type information
to preclude non animated subjects such as “the cabaret” for movement verbs such as
“dejó”, the interpretation as a single sentence with verb repetition would remain in-
accessible, to the best of our knowledge, to state-of-the-art parsers, including those
meant to analyze poetry.

As in the case of RNA design, we can encode probability valuesthat will allow
us to determine, in case of ambiguity, which possible analysis is more likely. Thus
if we’ve encoded probabilities to the effect that when a verbis not the initial word in
a sentence, the noun phrase that follows it is likely to be a direct object rather than
a subject, the first rule below will capture that noun phrase into the verb phrase (by
creating averb_phrase symbol that spans both substrings, i.e. from P1 to P3),
while marking it as the direct object of that verb (by associating the same index,
J, to both the verb and the object). This rule will be used for instance for “dejó el
cabaret sombrı́o”. Notice that we express it as a CHR rule in order to access the
word boundaries and generate the new symbols with appropriate span.

If our probabilities moreover indicate that initial verbs in Guillen’s poetry are
likely to appear before the subject noun phrase just for stylistic effect, the second of
the following two rules will be taken for “dejó el borracho”. This rule records the
role of subject found for this noun phrase and marks both it and the verb with an
index I, to indicate that the string L2 is the subject of the verb L1. Notice that since
we don’t need word boundaries made explicit, this rule is a CHRG one- the word
boundaries will be added automatically at compilation time.

verb(P1,P2,L1),
noun_phrase(P2,P3,L2)==>prob(subj_verb_inversion,low),
append(L1,L2,L) | verb(p1,p2,L1,J),
direct_object(P2,P3,L2,J), verb_phrase(P1,P3,L).
verb(L1),
noun_phrase(L2) ::> prob(subj_verb_inversion,high) |
verb(L1,I), subject(L2,I).

Likewise, we could use probabilities to express the likelihood that a repeated
verb’s implicit subject refers to the subject of that same verb’s other occurrence, and
consult them in the guard of the concerned rule in order to co-index both occurrences
of that verb with the same subject.

4.3 Our Methodology as a Multi-Agent System

Multi-agent systems are especially adequate for the solution of problems of dy-
namic, uncertain and distributed nature. The problem of parsing poems that follow
specific stylistic trends –in order to, for example, determine the authorship– is a
problem that can be seen as dynamic, uncertain and distributed. Taking into account
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this idea, and considering the features of our methodology,we think that it is pos-
sible to express the model introduced here in terms of multi-agent systems. Our
multi-agent system is basically composed by two agents:

• thebasic parserwhose task is gleaning the basic syntactic structures;
• and theprobabilistic part of the parserwhose task consists on labeling the am-

biguous structures with their appropriate role and co-indexing them with the
other structures they relate to.

These two agents collaborate in order to deal with the complex task of parsing
poems.

5 Concluding Remarks

Algorithmic approaches to poetry have been around for a relatively long time. They
mostly focus on generating poetry by automated or semi-automated means (e.g.
[15]), and as such, belong to the general field of Electronic Writing. Automated
poetry analysis, on the other hand, remains a bit more elusive, and concentrates on
the more mechanizable subtasks, such as automated analysisof sound and meter
(e.g. [14]).

To the best of our knowledge, this work is the first in approaching poetic analy-
sis through stylistic probabilities added to a constraint-based parser. The exploitable
similarities between molecular and poetic style are potentially much bigger than ex-
plored in this first paper on the subject, and relatively straightforward to implement
in the underlying model we propose. What we just exemplified with a process called
topicalization, would gain in being pursued on a corpus of known poetic techniques
that make use of parsing ambiguity. In the scope of this paper, note that the ground
level of our analysis is syntactic, in that respect we do not consider for instance what
may be termed recombinant words or concepts (see [20] for instance) that would be
visible only at an infra-syntaxic level. The neologismsimpagationthat appeared in
a previous section is such an example of re-invention of language out of the scope
of the present analysis, based on an invention process called in frenchmots-valises
which are built by blending together two different words. These remarks give a pic-
ture of the horizon we assign to our work.

Searls exposes in [19] the important role of computational linguistics techniques
in the domain of nucleic acid string analysis. Based on the indubitable efficiency of
these techniques in bioinformatics, he terms the processesat work in the production
of protein the language of the gene and the language of proteins . The metaphor
made its own way and the connotative field of linguistics is currently well anchored
in the domain: anyone nowadays speaks about gene and proteinexpression, open
readingframe,transcriptionfactors, thealphabetof DNA, genetranslation, mes-
sengerRNA, etc. Alternatively the metaphor of film developing, forinstance, could
have been used with a similar expressiveness (DNA footage being developped into
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protein image), but the lack of formalism would hardly have turned it into a op-
erational paradigm: the linguistic denomination is more than a mere metaphor due
to the concrete operability of linguistics tools. When speaking about a molecule’s
style, we actually go one step further in that anthropomorphic projection, and we do
it on purpose, in a very prospective manner. Our intention isto to explore a back-
ward genre contamination where the linguistic approach itself gets inspired by its
own application to nucleic acid analysis.
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