Poetic RNA: Adapting RNA Design Methodsto
the Analysis of Poetry
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Abstract The style in which an RNA molecule folds in space obeys lawawsf
cleotide binding and attraction which are encoded in itsnarly structure, that is,
in the sequence of nucleotides conforming it. Natural laggusentences can also
be viewed as encodings for a structure in space- in this egsarse tree- which ex-
hibits relationships or bindings between different paftthe sentence. We explore
the possibilities in adapting a recent, simple and elegathodology for bioinfor-
matics which has been successfully used for RNA design gtpitbblem of parsing
poems that follow specific stylistic trends. The methodgliogroduced in this paper
can be easily express in terms of multi-agent systems.

1 Introduction

The application to molecular biology of Al methods such agdg@rogramming and
constraint reasoning constitutes a fascinating intenglisary field which, despite
being relatively new, has already proved quite fertile. lAstance, logic program-
ming techniques have been used to describe and analyzéngtitecture [17], for

protein secondary structure prediction [16], for drug dadil3] and for predicting
gene functions [12].
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As well, methodologies that pertain to the natural langua@eessing field of
Al are now being exploited to analyze biological sequenuedsch is uncovering
similarities between the languages of molecular biologylamman languages (e.g.
B))2

On the other hand, the potential influence of computationaleoular biology
over natural language processing, has been much lessdtadtitough some sim-
ilarities and cross-fertilization potential are startittgbe identified and exploited
(e.q.[8]).

In [4], a novel methodology was presented -chrRNA- for addlireg an important
bioinformatics problem which has been proved to be commrtally hard: that of
finding an RNA sequence which folds into a given structure.

Obvious potential applications are to in vitro geneticsebwbling the scientists
to produce RNAs artificially from sequences; and to drug glesivhich typically
progresses backwards from proteins to RNAs and finally to BNA

A much less evident potential application is proposed i gaper: the adapta-
tion of the same methodology to computational linguistiosbtems. We explore
in particular its uses for solving the apparently dispagtblem of using stylis-
tic information as an aid for processing poetry, e.g. forspay or for authorship
determination.

Our work springs from the observation that, in the same wayalecules each
have their own style, while all obeying the same nucleic gcaanmar (that of RNA
or DNA), human artistic creations are marked by the specifite ©f their author
even when the grammar available to all authors (the elentbeis may use, the
ways in which they may combine those elements) may be the.SHms the En-
glish language, for instance, obeys the same grammar rolesatter who uses it,
but nevertheless, each poet uses that same grammar witkdiffergnt, while char-
acteristic for each author, styles.

The method developed in [4] for determining what RNA seqeeacgiven
molecule’s structure folds into involves a very simple graan augmented by prob-
abilities. These probabilities encode the molecule’sléstyas it were, so adapting
our method to computational linguistics involves resatia stylistic probabilities
observed in a given author’s poetic production in order thiaithe parse of a given
poem of the same author, or to aid in determining authorsbifi

2 Background

2.1 Constraint Handling Rules (CHR) and Constraint Handling
Rule Grammars (CHRG)

Constraint Handling Rules (CHRjrovide a simple bottom-up framework which
has been proved to be useful for algorithms dealing with tamds [10, 7]. Be-
cause logic terms are used, grammars can be described imHikaderms and are
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powerfully extended through (hidden) logical inferencbeTormat of CHR rules
is:

Head ==>Cuar d| Body

Head andBody are conjunctions of atoms ar@iar d is a test constructed from
(Prolog) built-in or system-defined predicates. The vdéealin Guar d andBody
occur also irHead. If the Guar d is the constant “true”, then it is omitted together
with the vertical bar. Its logical meaning is the form@@uard— (Head— Body))
and the meaning of a program is given by conjunction. Thex¢taee types of CHR
rules:

e Propagation ruleswhich add new constraints (body) to the constraint set.

e Simplification ruleswhich also add as new constraints those in the body, but
remove as well the ones in the head of the rule.

e Simpagation ruleswhich combine propagation and simplification traits, ahd a
low us to select which of the constraints mentioned in thelledahe rule should
remain and which should be removed from the constraint set.

The rewrite symbols for the first two rules are respectively>, <=> and for simga-
tion rules, the notation islead1\ Head2<=>body. Anything in Headl remains
in the constraint set and anythingtiead?2 is removed from the constraint set.

CHR have a grammatical counterpart-CHRG [7]- which is to Gkttt Definite
Clause Grammars are to Prolog: grammar symbols compileoristraints in which
the word boundaries are made explicit automatically, soetbeno need to handle
them in the grammar. The notation that distinguishes a granmate from a plain
CHRrule.is: : >

Thus for instance, the following CHRG rule:

verb, noun_phrase==> verb_phrase.
compiles into a CHR counterpart in which the start and endtgdare visible:

verb(Start, P1),
noun_phrase(P1l, End) ==> verb_phrase(Start, End).

2.2 ThechrRNA Method for RNA Design

Research on the language of nucleic acid, parsimoniouglpdwerfully formed

basically with only four letters, or nucleotides (A, C, T a@, has in the past
few years started to uncover fruitful similarities betwehis language and human
languages [19]. Just as a sentence in English is only thel@ipart, or tip of the

iceberg, for that sentence’s rich structure, which is e$ako its meaning, a nucleic
acid “sentence” (i.e., a sequence of As, C’s, T's and G’s)ei or codes for, an
incredibly rich structure which takes 3D shape when soméehtucleotides in the
sentence bind with others, and which is just as essentibbtcsentence’s meaning.
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Scientists in computational molecular biology are integd$oth in the genera-
tion aspect of this process, namely predicting which 3Dcstne a known sequence
of nucleotides might fold into, and in its analyzing aspeetnely finding out what
sequence of nucleotides codes for a molecule whose 3D gteuistknown.

Both these aspects have approximate computational seftas long as com-
promises are made with a particularly hard subproblem:dhatolecules contain-
ing a specific 3D structure calledpseudoknotSimple pseudoknots occur when a
structure of the form of a hairpin loop contains nucleotitiest bind outside the
loop.

Methods dealing with pseudoknots are delicate to concéntgally, the meth-
ods for RNA structure prediction used to simply disregas plossibility of having
pseudoknots, due to the huge algorithmic complexity themgahbring to the prob-
lem, compared to the moderate gain in prediction accuramytie analysis aspect,
also known as théverse RNA problepor the problem oRNA designthe same
algorithmic issue with pseudoknots persists. The solupi@posed recently in [4]
allows pseudoknots.

Previous solutions to this problem divide the whole struetnto smaller sub-
structures and apply some techniques to resolve it for emp#rts, which causes
them to be slow while working with longer RNAs (more than 5@&és). Bavarian
and Dahl show in [4] that by using a set of simple Constraimdiiag Rules, this
problem could actually have an approximate but somehowbsefution in linear
time, despite the simplistic grammar model.

This solution- named chrRNA- encodes an RNA molecule’sesiglterms of
probabilities which are incorporated into the (otherwisghly ambiguous) gram-
mar rules that describe RNA primary structure. With the ditheir embedded prob-
abilities, they guide the assignment of content (one of AJEor G) to nucleotides
we know are paired but whose identity is not known, and alsdhfe nucleotides
we know are unpaired but whose identity is likewise unknown.

These rules are based on the simple but highly ambiguousxdonée grammar
proposed in [1] for RNA secondary structure prediction:

S— cSdgSdaSyuSdgSyuSg
S—aSgjugcS
S— alg|ulc
S—SS

Using CHR to implement this grammar allows us both to exptwtbottom-up
characteristic of CHR rules, as well as keep track of amhigueadings with no
special overhead.

1 In RNA, thymine (T) is replaced by uracile (U), but U and T amrfpctly equivalent at the
informational level.
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2.2.1 Representation issues

As mentioned, the problem consists of finding a sequence @f,Al and G which
folds into the (given as input) structure of the desired RhN¥Athe chrRNA method,
this structure is entered in the format of CHR constraints, fer expressing that the
base number 1 and the base number 43 in the sequence aretpgitter, we add
the constrainpai r (1, 43) or if base number 3 is unpaired, the corresponding
constraint would beaipai r ( 3) . One advantage of this input format to the input
format used by previous methods (RNAinverse and RNA-SSE)asit is capable

of accepting pseudoknots in the input structure.

2.2.2 Processing issues

We now need to assign nucleotides to each position givennibiet iconstraints.
The trivial solution of randomly assigning one of the Wats@nick pairs (an AU or
CG pair) to each base pair and one of the four nucleotides (4 @nd U) to the
unpaired bases is not a reliable one, since we might end byavgiequence that may
not actually fold into the input structure. This is becauseriumber of GC pairs has
an important role in stabilizing a certain structure. Fatance, if we assign ba&
to 1 and bas#l to position 43 and if we have a baSén position 42, in the end, the
structure might bgai r (1, 42) instead ofpai r (1, 43) .

The solution we have proposed uses CHR rules combined wétpribbabilities
that are believed to govern the proportion of base pairsiwiRNA sequences, cal-
culated by comparing several RNAs together from Gutelldatdmparative RNA
website, a database of known RNA secondary structuresr édtmparing 100 test
cases with various length from 100 to 1500 bases, they fouadoilowing proba-
bilities for each base pair:

Peg = 0.53, Pay = 0.35,Pgy = 0.12

The other probabilities which are of interest are the prdas for an unpaired
base to be one &4, C, G, orU. The results are as follows:

Ps = 0.18 Py = 0.34,Fc = 0.27,R, = 0.20

Inserting the probabilities into the rules is done by getiegaa random variable
in the guard section of the rules, and then testing this randariable according
to the probabilities: for instance if the random variablgenerated when trying to
instantiate a pair of nucleotides X1 and Y21 is less th&3 he grammar rule will
assign a GC pairtpai r ( X1, Y1) .

The result is a quite simple while powerful system which perfs better than
the two previous methods for longer sequences, and whichgalide of handling
pseudoknots. The application of our ideas could be usefuhfaitro genetics and
for drug design. We shall next argue that they can also béfilyi adapted for
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literary style processing, and exemplify this thesis atire poetry of the Cuban
author Nicolas Guillen.

3 Poetic Style

Just as the CF grammar of RNA by itself is highly ambiguousnan languages
in general and poems in particular are also prone to amlyighidwever we have
chosen poems as a starting point because poetic style adfeartd in idiosyncratic
ways from standard word orderings often found in prose, dedtifying such style
trends might therefore contribute clues that serve to didguate, much in the way
as the probabilities used in chrRNA help identify an RNArggrunambiguously. We
can moreover express these trends precisely in the samehvaygh probabilities
resulting from an analysis of the particular author’s style

As an example, Guillen’s poems make frequent use of togiatdin, which of-
ten makes it hard to identify a sentence’s subject from syatane. For instance,
whereas in Spanish subjects precede the verb, a verse tarldith the main verb,
followed by the subject, as in: “Dejo el borracho en su coche, dejéabhbret...”
which reordered and translated, would be: “The drunkardthef cabaret ...in his
car”. In other cases, of course, what follows the main verthésmore expected
direct object, as in “dejo el cabaret”.

However, an analysis of Guillen’s style might allow us to @t into the context
free rules, just as we did for nucleic acid rules, probabkdgithat can help us disam-
biguate, e.g. by helping us determine in which cases an N&wiolg a verb is its
subject (as “el borracho”) and in which cases it is an objast“€l cabaret”). We
might want to encode Spanish and stylistic observationis asc

e a verb’s subject has high probability of being adjacent ithés preceding or
following it) the main verb;

e adirect object has high probability of following, ratheathpreceding, the verb;

e a main verb which is repeated has high probability of havinds repeated oc-
currence the same, albeit implicit, subject as the first oecice’s;

e a second verb with no overt subject, particularly if in thensaense and person
as the first verb, has high probability of implicitly havirttetsame subject as the
first verb.

According to these rules, we can bet that in our exampleg‘degabaret”, which
has no overt subject, actually means “the drunkard left #cet”, rather than “the
cabaret left”.

Of course, the more accurate an analysis of a given poet&s abd of the exact
values of the different probabilities - which above are csthted as being “high” -,
the more accurate the proposed method will be for corrediygistyle to interpret
a poem’s meaning. It is not our purpose in this paper to preposcise values for
any such probabilities; rather, we aim at showing how th&&lk method that has
proved so successful for RNA design can be adapted als@tarjt analysis.
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4 PoeticRNA

We now abstract the problem of analyzing poems to make it abilerio the same
form as that of RNA design.

4.1 Representation issues

Our “nucleotides” are now blocks of words marked by syntafttnctions, such as

verb, noun phrase, preposition phrase, which can in a faigesbe gleaned through
a regular CHRG , e.g. “el borracho” can be analyzed into a raiuase stretching

from position 2 in the input sentence to position 3 but whodeinside the sentence-
i.e., the style which binds concepts with one another- remé& be found. This

shows up in a CHR rule as the constraioun_phrase(2, 3, [ el , borracho]),
and in its CHRG counterpart, as the grammar symbol

noun_phrase([ el , borracho]), with word boundaries left implicit (but ac-
cessible if needed).

The roles we are after (subject, direct object, etc.) will lepresented also
through grammar symbols that compile into constraints. fidies will be super-
imposed, so to speak, over the stretch of input string corazkrThus if we view
“noun phrase” as a label covering the substring “el borréatiace we find that this
noun phrase’s role is that of subject, we will add a new castrwvhich, in this
same graphic view, would label the same substring with ‘&cij

Other arguments relevant to the analysis can of course thedied, for our pur-
poses here we'll only add in some cases an index | which wilaédentifier to
the “nucleotide” that the block containing it attaches torefers to (e.g. to the
antecedent in the case of a a prepositional phrase or aveetddiuse).

4.2 Processing issues

Let us consider the following sentence, adapted from Ng@aillen’s “La Gui-
tarra” for explanatory purposes: “Dej6 el borracho en sche) dej6 el cabaret som-
brio”. This can be parsed into one sentence, which explieitid in English would
correspond to “The drunkard left the sombre cabaret (byetiag) in his car”. Any
Spanish reader would understand that the verb’s repetgifor poetic effect, rather
than a “new” main verb. A machine analyzer, however, woultbgnize two sen-
tences, corresponding either to: “(Someone) left the damhkn his car, and (the
same person) left the sombre cabaret, or “Someone left tivékdrd in his car, and
the sombre cabaret left”. The first interpretation is likelfien one considers that
implicit subjects are very common in Spanish (so any redslerdpanish analyzer
would conceive it); the second one is nonsensical for hurpanglausible from syn-
tax alone, and therefore, a fair candidate for a poeticatipiormed parser. Note
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that while the state-of-the-artin parsing would allow ushoose between these two
interpretations, perhaps by paying the price of includiagantic type information
to preclude non animated subjects such as “the cabaret’dgement verbs such as
“dejo”, the interpretation as a single sentence with veyietition would remain in-
accessible, to the best of our knowledge, to state-of-thpaasers, including those
meant to analyze poetry.

As in the case of RNA design, we can encode probability vatlaswill allow
us to determine, in case of ambiguity, which possible amgigsmore likely. Thus
if we've encoded probabilities to the effect that when a \iemot the initial word in
a sentence, the noun phrase that follows it is likely to beectiobject rather than
a subject, the first rule below will capture that noun phrase the verb phrase (by
creating aver b_phr ase symbol that spans both substrings, i.e. from P1 to P3),
while marking it as the direct object of that verb (by asstiegathe same index,
J, to both the verb and the object). This rule will be used fistance for “dejo el
cabaret sombrio”. Notice that we express it as a CHR rulerdemto access the
word boundaries and generate the new symbols with apptesen.

If our probabilities moreover indicate that initial verbs Guillen’s poetry are
likely to appear before the subject noun phrase just forstigleffect, the second of
the following two rules will be taken for “dejo el borrachaorhis rule records the
role of subject found for this noun phrase and marks both dt #ue verb with an
index |, to indicate that the string L2 is the subject of theovel. Notice that since
we don’t need word boundaries made explicit, this rule is &RGHone- the word
boundaries will be added automatically at compilation time

verb(P1, P2, L1),

noun_phrase( P2, P3, L2) ==>prob(subj verb_i nversion,|ow),
append(L1,L2,L) | verb(pil,p2,L1,J),

direct _object(P2,P3,L2,J), verb_phrase(Pl, P3,L).
verb(L1),

noun_phrase(L2) ::> prob(subj_verb_inversion, high) |
verb(L1,1), subject(L2,1).

Likewise, we could use probabilities to express the likatiti that a repeated
verb’s implicit subject refers to the subject of that samebigeother occurrence, and
consultthem in the guard of the concerned rule in order tmdex both occurrences
of that verb with the same subject.

4.3 Our Methodology as a Multi-Agent System

Multi-agent systems are especially adequate for the swiuti problems of dy-

namic, uncertain and distributed nature. The problem ofipgrpoems that follow
specific stylistic trends —in order to, for example, deterenthe authorship— is a
problem that can be seen as dynamic, uncertain and digtdbliaking into account
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this idea, and considering the features of our methodolagythink that it is pos-
sible to express the model introduced here in terms of nagiént systems. Our
multi-agent system is basically composed by two agents:

e thebasic parsemhose task is gleaning the basic syntactic structures;

e and theprobabilistic part of the parsewhose task consists on labeling the am-
biguous structures with their appropriate role and co-xiug them with the
other structures they relate to.

These two agents collaborate in order to deal with the coxalek of parsing
poems.

5 Concluding Remarks

Algorithmic approaches to poetry have been around for divelst long time. They
mostly focus on generating poetry by automated or semiraated means (e.g.
[15]), and as such, belong to the general field of Electroniitikg. Automated
poetry analysis, on the other hand, remains a bit more edyaivd concentrates on
the more mechanizable subtasks, such as automated araflgsisnd and meter
(e.g. [14)).

To the best of our knowledge, this work is the first in appraagipoetic analy-
sis through stylistic probabilities added to a constréiased parser. The exploitable
similarities between molecular and poetic style are paépimuch bigger than ex-
plored in this first paper on the subject, and relativelyigtrdorward to implement
in the underlying model we propose. What we just exemplifigtl e process called
topicalization, would gain in being pursued on a corpus aikn poetic techniques
that make use of parsing ambiguity. In the scope of this paymee that the ground
level of our analysis is syntactic, in that respect we do posider for instance what
may be termed recombinant words or concepts (see [20] ftaricg) that would be
visible only at an infra-syntaxic level. The neologisimpagatiorthat appeared in
a previous section is such an example of re-invention oflagg out of the scope
of the present analysis, based on an invention processléalfeenchmots-valises
which are built by blending together two different words €6k remarks give a pic-
ture of the horizon we assign to our work.

Searls exposes in [19] the important role of computatiangllistics techniques
in the domain of nucleic acid string analysis. Based on thelitable efficiency of
these techniques in bioinformatics, he terms the procedsesrk in the production
of protein the language of the gene and the language of psotéihe metaphor
made its own way and the connotative field of linguistics isently well anchored
in the domain: anyone nowadays speaks about gene and pesf@i@ssionopen
readingframe,transcriptionfactors, thealphabetof DNA, genetranslation mes-
sengeRNA, etc. Alternatively the metaphor of film developing, fostance, could
have been used with a similar expressiveness (DNA footaigeg ldevelopped into
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protein image), but the lack of formalism would hardly hauened it into a op-
erational paradigm: the linguistic denomination is morantta mere metaphor due
to the concrete operability of linguistics tools. When dpeg about a molecule’s
style, we actually go one step further in that anthropomurptojection, and we do
it on purpose, in a very prospective manner. Our intentioio i®> explore a back-
ward genre contamination where the linguistic approadifitgets inspired by its
own application to nucleic acid analysis.
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