treewidth and applications

1 an insight into graph theory 2
2 treewidth: definition + properties 9

3 further discussions 17

1 an insight into graph theory

classical NP-hard problems

We consider always undirected simple graphs $G=(V, E)$

- $\omega(G)$: size of the maximum clique
- $\chi(G)$: chromatic number $=$ smallest k such as G has a k-coloring [NP-hard for $(k \geq 3)$]
- longest (weighted) path (+ special case: Hamiltonian path), maximum cut, ...
- $\alpha(G)$: size of the maximum independent set

1 an insight into graph theory

classical NP-hard problems

We consider always undirected simple graphs $G=(V, E)$

- $\omega(G)$: size of the maximum clique
- $\chi(G)$: chromatic number $=$ smallest k such as G has a k-coloring [NP-hard for $(k \geq 3)$]
- longest (weighted) path (+ special case: Hamiltonian path), maximum cut, ...
- $\alpha(G)$: size of the maximum independent set

\longleftarrow maximum independant set

1 an insight into graph theory

classical NP-hard problems

We consider always undirected simple graphs $G=(V, E)$

- $\omega(G)$: size of the maximum clique
- $\chi(G)$: chromatic number $=$ smallest k such as G has a k-coloring [NP-hard for $(k \geq 3)$]
- longest (weighted) path (+ special case: Hamiltonian path), maximum cut, ...
- $\alpha(G)$: size of the maximum independent set

\longleftarrow maximum independant set
- $\alpha(G)=\omega(\bar{G})$
- $\chi(G) \geq \omega(G)$
- ...

some classes of graphs

IDEA: problems become easier when graphs have some extra properties

- trees \longleftarrow acyclic
- bipartite graphs $\longleftarrow \chi(G)=2$
- perfect graphs $\longleftarrow \omega(H)=\chi(H)$ for every induced subgraph (incl. G itself)
- planar graphs \longleftarrow drawable in a plane with no crossing edge
- outerplanar graphs \longleftarrow planar graphs with all the vertices on the outer face
\bullet interval graphs \longleftarrow intersection graphs of intervals
- chordal graphs « every cycle has a chord
- SP-graphs \longleftarrow recursively obtained by combinations in series and parallel

some classes of graphs

IDEA: problems become easier when graphs have some extra properties

- trees \longleftarrow acyclic
- bipartite graphs $\longleftarrow \chi(G)=2$
- perfect graphs $\longleftarrow \omega(H)=\chi(H)$ for every induced subgraph (incl. G itself)
- planar graphs \longleftarrow drawable in a plane with no crossing edge
- outerplanar graphs \longleftarrow planar graphs with all the vertices on the outer face
- interval graphs \longleftarrow intersection graphs of intervals $\quad \triangleleft \triangleleft \triangleleft$
- chordal graphs \longleftarrow every cycle has a chord
- SP-graphs \longleftarrow recursively obtained by combinations in series and parallel

\longleftarrow interval graph

some classes of graphs

IDEA: problems become easier when graphs have some extra properties

- trees \longleftarrow acyclic
- bipartite graphs $\longleftarrow \chi(G)=2$
- perfect graphs $\longleftarrow \omega(H)=\chi(H)$ for every induced subgraph (incl. G itself)
- planar graphs \longleftarrow drawable in a plane with no crossing edge
- outerplanar graphs \longleftarrow planar graphs with all the vertices on the outer face
\bullet interval graphs \longleftarrow intersection graphs of intervals
- chordal graphs \longleftarrow every cycle has a chord
- SP-graphs \longleftarrow recursively obtained by combinations in series and parallel

some classes of graphs

IDEA: problems become easier when graphs have some extra properties

- trees \longleftarrow acyclic
- bipartite graphs $\longleftarrow \chi(G)=2$
- perfect graphs $\longleftarrow \omega(H)=\chi(H)$ for every induced subgraph (incl. G itself)
- planar graphs \longleftarrow drawable in a plane with no crossing edge
- outerplanar graphs \longleftarrow planar graphs with all the vertices on the outer face
- interval graphs \longleftarrow intersection graphs of intervals
- chordal graphs \longleftarrow every cycle has a chord $\quad \triangleleft \triangleleft \triangleleft$
- SP-graphs \longleftarrow recursively obtained by combinations in series and parallel

\longleftarrow chordal graph

some classes of graphs

- SP-graphs \longleftarrow recursively obtained by combinations in series and parallel $\quad \triangleleft \triangleleft \triangleleft$

some classes of graphs

- trees \longleftarrow acyclic
- bipartite graphs $\longleftarrow \chi(G)=2$
- perfect graphs $\longleftarrow \omega(H)=\chi(H)$ for every induced subgraph (incl. G itself)
- planar graphs \longleftarrow drawable in a plane with no crossing edge
- outerplanar graphs \longleftarrow planar graphs with all the vertices on the outer face
- interval graphs \longleftarrow intersection graphs of intervals
- chordal graphs \longleftarrow every cycle has a chord
- SP-graphs \longleftarrow recursively obtained by combinations in series and parallel

straigtforward relations

- trees are bipartite
- interval graphs are chordal
- outerplanar graphs are SP-graphs
- SP-graphs are planar
- chordal graphs are perfect
- ...

graphs as intersection graphs

DEF: A graph is an intersection graph if there exists a universe Λ and for every vertex v a set $S_{v} \subset \Lambda$ of objects of the universe such that edge (v, w) exists if and only if S_{v} and S_{w} intersect.

graphs as intersection graphs

DEF: A graph is an intersection graph if there exists a universe Λ and for every vertex v a set $S_{v} \subset \Lambda$ of objects of the universe such that edge (v, w) exists if and only if S_{v} and S_{w} intersect.

TH: Every graph is an intersection graph.

- restrictions on the universe Λ leads to new classes of graphs
- interval graphs = intersection graphs of intervals
- chordal graphs are intersection graphs of subtrees of a tree

graphs as intersection graphs

DEF: A graph is an intersection graph if there exists a universe Λ and for every vertex v a set $S_{v} \subset \Lambda$ of objects of the universe such that edge (v, w) exists if and only if S_{v} and S_{w} intersect.

TH: Every graph is an intersection graph.

- restrictions on the universe Λ leads to new classes of graphs
- interval graphs = intersection graphs of intervals
- chordal graphs are intersection graphs of subtrees of a tree

the Graph Minor Theorem

DEF: graph minor: delete vertices and edges, contract edges

TH: [Robertson-Seymour-83 $\longrightarrow 04]$
Every minor-hereditary graph class has a finite set of forbidden minors.
Trees $=\left\langle C_{3}\right\rangle$, Planars $=\left\langle K_{3,3}, K_{5}\right\rangle$, SP-Graphs $=\left\langle K_{4}\right\rangle$

the Graph Minor Theorem

DEF: graph minor: delete vertices and edges, contract edges

TH: [Robertson-Seymour-83 $\longrightarrow 04]$
Every minor-hereditary graph class has a finite set of forbidden minors.
Trees $=\left\langle C_{3}\right\rangle$, Planars $=\left\langle K_{3,3}, K_{5}\right\rangle$, SP-Graphs $=\left\langle K_{4}\right\rangle$

treewidth and tree decomposition

IDEA: problems are usually much simpler when the graph is acyclic try to measure "how far" is a graph from being a tree

- $\omega(G), \alpha(G), \chi(G) \ldots$
- $t w(G)$: treewidth of G [NP-hard if the expected treewidth is part of the input]

2 treewidth: definition + properties

dynamic programming on trees

EX: Maximum independent set on $T=(V, E)$ rooted at $r \in V$
For $v \in V$, let T_{v} denote the subtree rooted at v.
Let $f^{+}(v)$ be the size of a maximum independent set for T_{v} that contains v.
Similarly, $f^{-}(v)$ is the size of a maximum independent set for T_{v} that does not contain v.
The following algorithm computes a maximum independent set for T in $0(|V|)$ time.
Traverse T starting from r in post order. Let v be the current vertex.

- if v is a leaf, let $f^{+}(v)=1$ and $f^{-}(v)=0$.
- else let x_{1}, \ldots, x_{k} be the children of v.

Set $f^{+}(v)=1+\sum_{i=1}^{k} f^{-}\left(x_{i}\right)$ and $f^{-}(v)=\sum_{i=1}^{k} \max \left\{f^{+}\left(x_{i}\right), f^{-}\left(x_{i}\right)\right\}$

Return $\max \left\{f^{+}(r), f^{-}(r)\right\}$

tree decomposition: definition

DEF: A tree decomposition for a graph $G=(V, E)$ is a pair

$$
\begin{array}{cc}
\left(\left\{X_{i} \mid i \in I\right\},\right. & T=(I, F)) \\
\text { bags } & \text { tree }
\end{array}
$$

such that

- $\cup_{i \in I} X_{i}=V$
- for each $\{u, v\} \in E$ there is some $i \in I$ so that $\{u, v\} \subset X_{i}$
- for all $v \in V$ the set $I_{v}=\left\{i \in I \mid v \in X_{i}\right\}$ is connected in T
(bags cover vertices)
(bags cover edges)
(tree property)

tree decomposition: definition

DEF: A tree decomposition for a graph $G=(V, E)$ is a pair

$$
\begin{array}{cc}
\left(\left\{X_{i} \mid i \in I\right\},\right. & T=(I, F)) \\
\text { bags } & \text { tree }
\end{array}
$$

such that

- $\cup_{i \in I} X_{i}=V$
- for each $\{u, v\} \in E$ there is some $i \in I$ so that $\{u, v\} \subset X_{i}$
- for all $v \in V$ the set $I_{v}=\left\{i \in I \mid v \in X_{i}\right\}$ is connected in T
(bags cover vertices)
(bags cover edges)
(tree property)

tree decomposition: definition

Intuitively, a tree decomposition represents the vertices of the given graph as subtrees of a tree, in such a way that vertices are adjacent only when the corresponding subtrees intersect.

DEF: the width of a tree decomposition is $\max _{i \in I}\left|X_{i}\right|-1$.
DEF: the treewidth of a graph G, noted $t w(G)$, is the min width of all its tree decompositions DEF: a graphs of treewidth at most k is called a partial k-tree

treewidth: examples and properties

We are interested in tree decompositions of small treewidth, which certify that the graph is in some way "tree-like".

EX: trees have treewidth 1

treewidth: examples and properties

We are interested in tree decompositions of small treewidth, which certify that the graph is in some way "tree-like".

EX: trees have treewidth 1

treewidth: examples and properties

We are interested in tree decompositions of small treewidth, which certify that the graph is in some way "tree-like".

EX: trees have treewidth 1

EX: For any $G=(V, E)$ a single bag containing V forms a tree decomposition of width $n-1$.

treewidth: examples and properties

We are interested in tree decompositions of small treewidth, which certify that the graph is in some way "tree-like".

EX: trees have treewidth 1

EX: For any $G=(V, E)$ a single bag containing V forms a tree decomposition of width $n-1$.

PROP: $t w(H) \leq t w(G)$ for any subgraph H of a graph G.
PROP: if a graph $G=(V, E)$ has two components A and B, with $A \cup B=V$ then $t w(G)=\max \{t w(A), t w(B)\}$.
PROP: Let $\left(\left\{X_{i} \mid i \in I\right\}, T=(I, F)\right)$ be a tree decomposition for $G=(V, E)$. For any clique $G[W], W \subset V$, there is an $i \in I$ such that $W \subset X_{i}$.

PROP: $t w(H) \leq t w(G)$ for any subgraph H of a graph G.
PROP: if a graph $G=(V, E)$ has two components A and B, with $A \cup B=V$ then $t w(G)=\max \{t w(A), t w(B)\}$.
PROP: Let $\left(\left\{X_{i} \mid i \in I\right\}, T=(I, F)\right)$ be a tree decomposition for $G=(V, E)$. For any clique $G[W], W \subset V$, there is an $i \in I$ such that $W \subset X_{i}$.

EX: the treewidth of K_{n} is $n-1$
EX: SP-graphs have treewidth 2
EX: the $n \times n$-grid has treewidth n

PROP: $t w(H) \leq t w(G)$ for any subgraph H of a graph G.
PROP: if a graph $G=(V, E)$ has two components A and B, with $A \cup B=V$ then $t w(G)=\max \{t w(A), t w(B)\}$.
PROP: Let $\left(\left\{X_{i} \mid i \in I\right\}, T=(I, F)\right)$ be a tree decomposition for $G=(V, E)$.
For any clique $G[W], W \subset V$, there is an $i \in I$ such that $W \subset X_{i}$.

EX: the treewidth of K_{n} is $n-1$
EX: SP-graphs have treewidth 2
EX: the $n \times n$-grid has treewidth n

A tree decomposition of width
$2 n-1$

dynamic programming on partial k-trees

EX: Again, maximum independent set for a graph $G=(V, E)$, if we are provided a tree decomposition $\left(\left\{X_{i} \mid i \in I\right\}, T=(I, F)\right)$ of width $\leq k$.

The algorithm below computes a maximum independent set for G in $O\left(k^{2} 4^{k}|V|\right)$ time.

Pick an arbitrary root $r \in I$ and for $i \in I$, let $V_{i}=\cup_{j \in T_{i}} X_{j}$ where T_{i} denotes the subtree rooted at i. For $U \subset X_{i}$ let $f^{U}(i)$ be the size of a maximum independent subset of V_{i} whose intersection with X_{i} is exaclty U.

- traverse T starting from r in post order.

Let i be the current index.

- if i is a leaf, for every $U \subset X_{i}$
let $f^{U}(i)=|U|$ if U is independent in G
and $f^{U}(i)=-\infty$, otherwise.
- else let c_{1}, \ldots, c_{l} be the children of i.

Set $f^{U}(i)=|U|+\sum_{j=1}^{l} \max \left\{f^{W}\left(c_{j}\right) \mid W \subset X_{c_{j}}-U\right.$

Pick an arbitrary root $r \in I$ and for $i \in I$, let $V_{i}=\cup_{j \in T_{i}} X_{j}$ where T_{i} denotes the subtree rooted at i.
For $U \subset X_{i}$ let $f^{U}(i)$ be the size of a maximum independent subset of V_{i} whose intersection with X_{i} is exaclty U.

- traverse T starting from r in post order. Let i be the current index.
- if i is a leaf, for every $U \subset X_{i}$ let $f^{U}(i)=|U|$ if U is independent in G and $f^{U}(i)=-\infty$, otherwise.
- else let c_{1}, \ldots, c_{l} be the children of i. Set $f^{U}(i)=|U|+\sum_{j=1}^{l} \max \left\{f^{W}\left(c_{j}\right) \mid W \subset X_{c_{j}}-U\right.$ and $W \cup U$ is indep. $\}$

characterization

PROP: Partial k-trees are closed under taking minors.
By [Robertson-Seymour] there is hence a finite set of forbidden minors.
But they are not known, except for small k.

- $k=1$ (trees) $\longrightarrow<K_{3}>$
- $k=2$ (SP-graphs) $\left.\longrightarrow<K_{4}\right\rangle$
- $k=3 \longrightarrow<K_{5}, K_{2,2,2}$, GR-1, GR-2 $>$
- $k=4 \longrightarrow$ more than 75 ...

GR-1

GR-2

TH: [Arnborg-Corneil-Proskurowski-87]
Deciding whether the treewidth of a given graph is at most k is NP-complete.
TH: [Bodlaender-96]
For any $k \in \mathbb{N}$ there exists a linear time algorithm to test whether a given graph has treewidth at most k and - if so - output a corresponding tree decomposition.
RK: The runtime is exponential in k^{3}.
Open: Can the treewidth be computed in polynomial time for planar graphs?

3 further discussions

propositions for further discussion

- perfect elimination ordering \longrightarrow variable elimination in a CSP
- RNA secondary structure, pseudoknots, outerplanar graphs, relations with treewidth
- further discussions on dynamic programming (serial vs non-serial DP)
+ applications to bioinfo
- recursive treewidth?

the dynamic programming paradigm (DP)

- the initial stage contains trivial solutions to sub-problems,
- each partial solution in a later stage can be calculated by recurring on only a fixed number of partial solutions in an earlier stage,
- the final stage contains the overall solution.

Illustration of DP on two examples coming from bioinformatics
In both examples we are dealing with substrings, and thus using the natural order on them

string edit distance (aka Levenshtein distance)

input: 2 strings of length $0(n)$ over a given alphabet $\Sigma($ eg. $\Sigma=\{a, t, c, g\})$ operations: insertion, deletion, substitution
output: an alignment of the strings (or equivalently, an editing script)
optimization: each operation has a non negative cost, we seek to minimize the editing cost
(1) LEAD $\xrightarrow{\text { del }}$ LED $\xrightarrow{\text { del }}$ LD $\xrightarrow{\text { ins }}$ OLD $\xrightarrow{\text { ins }}$ GOLD
(2) LEAD $\xrightarrow{\text { subs }}$ GEAD $\xrightarrow{\text { subs }}$ GELD $\xrightarrow{\text { subs }}$ GOLD
(1)

$G O L-D$
(2) L G A D

For any string $m \in \Sigma^{*}$ we note $m[i . . j]$ its substring starting at i and ending at j.
Given two strings a and b, we define $d(i, j)=\operatorname{mincost}(a[1 . . i] \longrightarrow b[1 . . j])$ to be the minimal cost to edit the substring $a[1 . . i]$ into the substring $b[1 . . j]$.

$$
d(i, j)=\min \left\{\begin{array}{lc}
d(i-1, j)+\text { del_cost } & \text { delete the last character of } a[1 . . i] \\
d(i, j-1)+\text { ins_cost } & \text { delete the last character of } b[1 . . j] \\
d(i-1, j-1)+\text { subs_cost } & \text { substitute } b[j] \text { to } a[i]
\end{array}\right.
$$

- complexity of the algorithm: space $0(n) /$ time $0\left(n^{2}\right)$
- complexity of the problem (in the general case): time $0\left(n^{2}\right)$ [+ ref]
- refinements when imposing some restrictions: affine convex gap function + four russians speed-up [+ ref]

RNA secondary structure

input: a string s over the alphabet $\{a, u, c, g\}$ operations: base pairings $a=u, c=g$ (watson-crick), and $g=u$ (wooble) output: a list of pairings that forms a well parenthesisized expression optimization: we seek the structure that gives the maximum number of pairings

[^0]$M(i, j)$ is defined as the number of pairings of the optimal secondary structure on the substring $s[i . . j]$. The structure is optimal when it maximizes the number of pairings.

- complexity of the algorithm: space $O\left(n^{2}\right)$ / time $O\left(n^{3}\right)$ [ref: nussinov]
- complexity of the problem: open

RK: this biologically unrealistic algorithm is actually the basis for a more relevant one, that includes a fully precise thermodynamic model of the molecule [zuker, vienna], leaving the complexities unchanged.

$$
\begin{aligned}
1 \leq & i \leq n \\
1 \leq j \leq & m \quad(m \in O(n)) \\
& \quad \text { space } O(n) \\
& \text { time } O\left(n^{2}\right)
\end{aligned}
$$

$$
1 \leq i \leq j \leq n
$$

$d(i, j)=\min \left\{\begin{array}{l}d(i-1, j)+\text { del_cost } \\ d(i, j-1)+\text { ins_cost } \\ d(i-1, j-1)+\text { subs_cost }\end{array}\right.$
$M(i, j)=\max \left\{\begin{array}{l}M(i, j-1) \\ M(i, k-1)+M(k+1, j-1)+1\end{array}\right.$

serial vs. non-serial DP

matrix

associated digraph

associated graph

[^0]: 5' GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

