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Overview of treewidth and some applications

1 an insight into graph theory

classical NP-hard problems

We consider always undirected simple graphs G = (V, E)

• ω(G) : size of the maximum clique
• χ(G) : chromatic number = smallest k such as G has a k-coloring [NP-hard for (k ≥ 3)]
• longest (weighted) path (+ special case: Hamiltonian path), maximum cut, ...
• α(G) : size of the maximum independent set
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1 an insight into graph theory

classical NP-hard problems

We consider always undirected simple graphs G = (V, E)

• ω(G) : size of the maximum clique
• χ(G) : chromatic number = smallest k such as G has a k-coloring [NP-hard for (k ≥ 3)]
• longest (weighted) path (+ special case: Hamiltonian path), maximum cut, ...
• α(G) : size of the maximum independent set ⊳ ⊳ ⊳

←− maximum independant set

• α(G) = ω(G)

• χ(G) ≥ ω(G)

• ...
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Overview of treewidth and some applications

some classes of graphs

IDEA: problems become easier when graphs have some extra properties

• trees ←− acyclic
• bipartite graphs ←− χ(G) = 2

• perfect graphs ←− ω(H) = χ(H) for every induced subgraph (incl. G itself)
• planar graphs ←− drawable in a plane with no crossing edge
• outerplanar graphs ←− planar graphs with all the vertices on the outer face
• interval graphs ←− intersection graphs of intervals
• chordal graphs ←− every cycle has a chord
• SP-graphs ←− recursively obtained by combinations in series and parallel
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Overview of treewidth and some applications

some classes of graphs

• SP-graphs ←− recursively obtained by combinations in series and parallel ⊳ ⊳ ⊳

←−
series-parallel graph

(SP-graph)

January 29, 2008 Centro de Inteligência Artificial - Universidade Nova de Lisboa 5



Overview of treewidth and some applications

some classes of graphs

• trees ←− acyclic
• bipartite graphs ←− χ(G) = 2

• perfect graphs ←− ω(H) = χ(H) for every induced subgraph (incl. G itself)
• planar graphs ←− drawable in a plane with no crossing edge
• outerplanar graphs ←− planar graphs with all the vertices on the outer face
• interval graphs ←− intersection graphs of intervals
• chordal graphs ←− every cycle has a chord
• SP-graphs ←− recursively obtained by combinations in series and parallel

straigtforward relations

• trees are bipartite
• interval graphs are chordal
• outerplanar graphs are SP-graphs
• SP-graphs are planar
• chordal graphs are perfect
• ...
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Overview of treewidth and some applications

graphs as intersection graphs

DEF: A graph is an intersection graph if there exists
a universe Λ and for every vertex v a set Sv ⊂ Λ of
objects of the universe such that edge (v, w) exists
if and only if Sv and Sw intersect.
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DEF: A graph is an intersection graph if there exists
a universe Λ and for every vertex v a set Sv ⊂ Λ of
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if and only if Sv and Sw intersect.

TH: Every graph is an intersection graph.

• restrictions on the universe Λ leads to new classes of graphs
• interval graphs = intersection graphs of intervals
• chordal graphs are intersection graphs of subtrees of a tree
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Overview of treewidth and some applications

the Graph Minor Theorem

DEF: graph minor: delete vertices and edges, contract edges

−→ −→

TH: [Robertson-Seymour-83 −→ 04]
Every minor-hereditary graph class has a finite set of forbidden minors.
Trees = < C3 >, Planars = < K3,3, K5 >, SP-Graphs = < K4 >
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Overview of treewidth and some applications

the Graph Minor Theorem

DEF: graph minor: delete vertices and edges, contract edges

−→ −→

TH: [Robertson-Seymour-83 −→ 04]
Every minor-hereditary graph class has a finite set of forbidden minors.
Trees = < C3 >, Planars = < K3,3, K5 >, SP-Graphs = < K4 >

treewidth and tree decomposition

IDEA: problems are usually much simpler when the graph is acyclic
try to measure “how far” is a graph from being a tree

• ω(G), α(G), χ(G)...
• tw(G) : treewidth of G [NP-hard if the expected treewidth is part of the input] ⊳ ⊳ ⊳
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Overview of treewidth and some applications

2 treewidth: definition + properties

dynamic programming on trees

EX: Maximum independent set on T = (V, E) rooted at r ∈ V

For v ∈ V , let Tv denote the subtree rooted at v.
Let f+(v) be the size of a maximum independent set for Tv that contains v.
Similarly, f−(v) is the size of a maximum independent set for Tv that does not contain v.

The following algorithm computes a maximum independent set for T in 0(|V |) time.

Traverse T starting from r in post order.
Let v be the current vertex.

• if v is a leaf, let f+(v) = 1 and f−(v) = 0.
• else let x1, ..., xk be the children of v.

Set f+(v) = 1 +
∑k

i=1 f−(xi)

and f−(v) =
∑k

i=1 max{f+(xi), f
−(xi)}

Return max{f+(r), f−(r)}
Tv

v

January 29, 2008 Centro de Inteligência Artificial - Universidade Nova de Lisboa 9



Overview of treewidth and some applications

tree decomposition: definition

DEF: A tree decomposition for a graph G = (V, E) is a pair

({Xi|i ∈ I}, T = (I, F ))

bags tree

such that

• ∪i∈IXi = V (bags cover vertices)

• for each {u, v} ∈ E there is some i ∈ I so that {u, v} ⊂ Xi (bags cover edges)

• for all v ∈ V the set Iv = {i ∈ I|v ∈ Xi} is connected in T (tree property)
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Overview of treewidth and some applications

tree decomposition: definition
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Intuitively, a tree decomposition represents the vertices of the given graph as subtrees of a
tree, in such a way that vertices are adjacent only when the corresponding subtrees intersect.

DEF: the width of a tree decomposition is maxi∈I |Xi| − 1.
DEF: the treewidth of a graph G, noted tw(G), is the min width of all its tree decompositions
DEF: a graphs of treewidth at most k is called a partial k-tree
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Overview of treewidth and some applications

treewidth: examples and properties

We are interested in tree decompositions of small treewidth, which certify that the graph is in
some way “tree-like”.

EX: trees have treewidth 1
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EX: For any G = (V, E) a single bag containing V forms a tree decomposition of width n− 1.
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Overview of treewidth and some applications

PROP: tw(H) ≤ tw(G) for any subgraph H of a graph G.
PROP: if a graph G = (V, E) has two components A and B, with A ∪B = V

then tw(G) = max{tw(A), tw(B)}.
PROP: Let ({Xi|i ∈ I}, T = (I, F )) be a tree decomposition for G = (V, E).

For any clique G[W ], W ⊂ V , there is an i ∈ I such that W ⊂ Xi.
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Overview of treewidth and some applications

dynamic programming on partial k-trees

EX: Again, maximum independent set for a graph G = (V, E),
if we are provided a tree decomposition ({Xi|i ∈ I}, T = (I, F )) of width ≤ k.

The algorithm below computes a maximum independent set for G in O(k24k|V |) time.

Pick an arbitrary root r ∈ I and for i ∈ I,
let Vi = ∪j∈Ti

Xj where Ti denotes the subtree rooted at i.
For U ⊂ Xi let fU (i) be the size of a maximum independent
subset of Vi whose intersection with Xi is exaclty U .
• traverse T starting from r in post order.

Let i be the current index.
• if i is a leaf, for every U ⊂ Xi

let fU (i) = |U | if U is independent in G

and fU (i) = −∞, otherwise.
• else let c1, ..., cl be the children of i.

Set fU (i) = |U |+
∑l

j=1 max{fW (cj)|W ⊂ Xcj
− U

and W ∪ U is independent }

Xi

r

Ti

Vi
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Overview of treewidth and some applications

Pick an arbitrary root r ∈ I and for i ∈ I, let Vi = ∪j∈Ti
Xj where Ti denotes the subtree rooted at i.

For U ⊂ Xi let fU (i) be the size of a maximum independent subset of Vi whose intersection with Xi is exaclty U .

Xi

r

Ti

Vi

Xi

U

Xi

U

Vi

fU (i)

• traverse T starting from r in post order. Let i be the current index.

• if i is a leaf, for every U ⊂ Xi let fU (i) = |U | if U is independent in G and fU (i) = −∞, otherwise.

• else let c1, ..., cl be the children of i. Set fU (i) = |U | +
Pl

j=1
max{fW (cj)|W ⊂ Xcj

− U and W ∪ U is indep. }
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Overview of treewidth and some applications

characterization

PROP: Partial k-trees are closed under taking minors.

By [Robertson-Seymour] there is hence a finite set of forbidden minors.
But they are not known, except for small k.

• k = 1 (trees) −→ < K3 >

• k = 2 (SP-graphs) −→ < K4 >

• k = 3 −→ < K5, K2,2,2, GR-1, GR-2 >

• k = 4 −→ more than 75...
GR-1 GR-2

TH: [Arnborg-Corneil-Proskurowski-87]
Deciding whether the treewidth of a given graph is at most k is NP-complete.

TH: [Bodlaender-96]
For any k ∈ IN there exists a linear time algorithm to test whether a given graph has treewidth
at most k and – if so – output a corresponding tree decomposition.
RK: The runtime is exponential in k3.

Open: Can the treewidth be computed in polynomial time for planar graphs ?
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Overview of treewidth and some applications

3 further discussions

propositions for further discussion

• perfect elimination ordering −→ variable elimination in a CSP
• RNA secondary structure, pseudoknots, outerplanar graphs, relations with treewidth
• further discussions on dynamic programming (serial vs non-serial DP)

+ applications to bioinfo
• recursive treewidth ?
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Overview of treewidth and some applications

the dynamic programming paradigm (DP)

• the initial stage contains trivial solutions to sub-problems,
• each partial solution in a later stage can be calculated by recurring

on only a fixed number of partial solutions in an earlier stage,
• the final stage contains the overall solution.

Illustration of DP on two examples coming from bioinformatics
In both examples we are dealing with substrings, and thus using the natural order on them
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Overview of treewidth and some applications

string edit distance (aka Levenshtein distance)

input : 2 strings of length 0(n) over a given alphabet Σ (eg. Σ = {a, t, c, g})
operations : insertion, deletion, substitution
output : an alignment of the strings (or equivalently, an editing script)
optimization : each operation has a non negative cost, we seek to minimize the editing cost

(1) LEAD del
−−→ LED del

−−→ LD ins
−−→ OLD ins

−−→ GOLD

(2) LEAD subs
−−−→ GEAD subs

−−−→ GELD subs
−−−→ GOLD

(1) - - L E A D
G O L - - D

(2) L E A D
G O L D
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Overview of treewidth and some applications

For any string m ∈ Σ∗ we note m[i..j] its substring starting at i and ending at j.

Given two strings a and b, we define d(i, j) = mincost(a[1..i] −→ b[1..j])

to be the minimal cost to edit the substring a[1..i] into the substring b[1..j].

d(i, j) = min















d(i− 1, j) + del cost delete the last character of a[1..i]

d(i, j − 1) + ins cost delete the last character of b[1..j]

d(i− 1, j − 1) + subs cost substitute b[j] to a[i]

- complexity of the algorithm: space 0(n) / time 0(n2)

- complexity of the problem (in the general case): time 0(n2) [+ ref]
- refinements when imposing some restrictions: affine convex gap function + four russians
speed-up [+ ref]
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Overview of treewidth and some applications

RNA secondary structure

input : a string s over the alphabet {a, u, c, g}

operations : base pairings a = u, c = g (watson-crick), and g = u (wooble)
output : a list of pairings that forms a well parenthesisized expression
optimization : we seek the structure that gives the maximum number of pairings

5’ GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA 3’

(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....
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Overview of treewidth and some applications

M(i, j) is defined as the number of pairings of the optimal secondary structure on the
substring s[i..j]. The structure is optimal when it maximizes the number of pairings.

M(i, j) = max















M(i, j − 1)
i j − 1 j

M(i, k − 1) + M(k + 1, j − 1) + 1
ki k + 1 j − 1 jk − 1

(i ≤ k < j)

- complexity of the algorithm: space O(n2) / time O(n3) [ref: nussinov]
- complexity of the problem: open

RK: this biologically unrealistic algorithm is actually the basis for a more relevant one, that
includes a fully precise thermodynamic model of the molecule [zuker, vienna], leaving the
complexities unchanged.
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Overview of treewidth and some applications

1 ≤ i ≤ n 1 ≤ i ≤ j ≤ n

1 ≤ j ≤ m (m ∈ O(n))

space O(n) space O(n2)

time O(n2) time O(n3)

d(i, j) = min

8

>

>

<

>

>

:

d(i − 1, j) + del cost

d(i, j − 1) + ins cost

d(i − 1, j − 1) + subs cost

M(i, j) = max

(

M(i, j − 1)

M(i, k − 1) + M(k + 1, j − 1) + 1

j1

i

1

n

m j n1

i

1

n

[Levenshtein] [Nussinov]
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Overview of treewidth and some applications

serial vs. non-serial DP

j1

i

1

n

m

matrix associated digraph associated graph
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